UNIVERSITY OF KONSTANZ Department of Physics Thiago Lucena, Dr. Andrey Moskalenko

http://tinyurl.com/qo2019

Quantum Optics Winter semester 2018/2019 - Exercise sheet 3 Distributed: 12.11.2018, Discussion: 19.11.2018

Problem 1: Coherent states of light.

a) Compute the photon number fluctuations $\langle (\hat{a}^{\dagger}\hat{a})^2 - \langle \hat{a}^{\dagger}\hat{a} \rangle^2 \rangle$ for a coherent state $|\alpha\rangle$. Compare this value with the photon number expectation value for this same state.

b) Given the displacement operator $D(\alpha) = \exp(\alpha \hat{a}^{\dagger} - \alpha^* \hat{a})$, for which $|\alpha\rangle = D(\alpha)|0\rangle$, use the Baker-Campbell-Hausdorff formula to show that:

$$\hat{a}^{\dagger}|\alpha\rangle = \left(\frac{\partial}{\partial\alpha} + \frac{\alpha^{*}}{2}\right)|\alpha\rangle$$

c) Show that:

$$\hat{D}(\alpha)\hat{D}(\beta) = \hat{D}(\alpha + \beta)\exp(i\operatorname{Im}\{\alpha\beta^*\})$$

Problem 2: Algebra of bosonic operators.

a) Given two operator-valued functions $\hat{F}(\hat{a}, \hat{a}^{\dagger})$ and $\hat{G}(z; \hat{a}, \hat{a}^{\dagger}) = e^{\hat{a}z} \hat{F}(\hat{a}, \hat{a}^{\dagger})e^{-\hat{a}z} = \hat{F}(\hat{a}, e^{\hat{a}z}\hat{a}^{\dagger}e^{-\hat{a}z})$, where $z \in \mathbb{C}$ and \hat{F} is an arbitrary power series in \hat{a} and \hat{a}^{\dagger} , show that from the derivative of \hat{G} relative to z for $\hat{F} = \hat{a}^{\dagger}$ one can conclude that $d\hat{G}(z; \hat{a}, \hat{a}^{\dagger})/dz = [\hat{a}, \hat{F}(\hat{a}, \hat{a}^{\dagger} + z)]$ and $\hat{G}(z; \hat{a}, \hat{a}^{\dagger}) = \hat{F}(\hat{a}, \hat{a}^{\dagger} + z)$ for any \hat{F} . Using these relations, show that $\partial \hat{F}(\hat{a}, \hat{a}^{\dagger})/\partial \hat{a}^{\dagger} = [\hat{a}, \hat{F}(\hat{a}, \hat{a}^{\dagger})]$.

b) Consider the operator-valued functions $\hat{G}(\hat{a}, \hat{a}^{\dagger})$ and $\hat{F}(\hat{a}, \hat{a}^{\dagger}) = \hat{a}\hat{G}(\hat{a}, \hat{a}^{\dagger})$. Knowing that such functions can be rearranged in any desired way with respect to the order of \hat{a} and \hat{a}^{\dagger} by means of the commutation relations, consider the function obtained from \hat{G} by moving all anihilation operators to the right and the creation operators to the left, which is usually denoted by $\hat{G}^{(N)}(\hat{G}^{(N)} = \hat{G})$ and called "normal ordered form" of the given function. Use the relation obtained in section (a) to show that $\hat{F}(\hat{a}, \hat{a}^{\dagger}) = \partial \hat{G}^{(N)}(\hat{a}, \hat{a}^{\dagger})/\partial \hat{a}^{\dagger} + \hat{G}^{(N)}(\hat{a}, \hat{a}^{\dagger})\hat{a}$. Considering the "normal order operator" $\hat{N}\hat{A} = :\hat{A}:$, which when applied on a given operator function $\hat{A}(\hat{a}, \hat{a}^{\dagger})$ forcibly arranges all annihilation operators to the right and the creation operators to the left without accounting for the commutation relations (i.e., $:\hat{a}\hat{a}^{\dagger} := \hat{a}^{\dagger}\hat{a}$ and $\hat{G}^{(N)} \neq :\hat{G}:$), and replacing \hat{a} for $\hat{a} + \partial/\partial \hat{a}^{\dagger}$ within the normal order operator, show that $\hat{F}^{(N)}(\hat{a}, \hat{a}^{\dagger}) = :\hat{F}(\hat{a} + \partial/\partial \hat{a}^{\dagger}, \hat{a}^{\dagger}):$.

Problem 3: Schrödinger-Robertson uncertainty relation.

Given an arbitrary state $|\Psi\rangle$ and two arbitrary Hermitian operators \hat{A} and \hat{B} , show that, for $\sigma_A = \langle \Psi | (\hat{A} - \langle \hat{A} \rangle)^2 | \Psi \rangle$ and $\sigma_B = \langle \Psi | (\hat{B} - \langle \hat{B} \rangle)^2 | \Psi \rangle$, the following relation is true:

$$\sigma_A^2 \sigma_B^2 \ge \frac{1}{4} \Big| \langle \{\hat{A}, \hat{B}\} \rangle - 2 \langle \hat{A} \rangle \langle \hat{B} \rangle \Big|^2 + \frac{1}{4} |\langle [\hat{A}, \hat{B}] \rangle |^2.$$

